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Reduction factors for strongly coupled orbital triplet 
Jahn-Teller systems: 11. T 63 (e + tz) Jahn-Teller 
systems 

J L Dunn and C A Bates 
Physics Department, The University, Nottingham NG7 2RD, UK 

Received 19 September 1988 

Abstract. A method of studying stronglycoupled Jahn-Teller (JT) systems involving a unitary 
transformation and energy minimisation procedure developed in the preceding paper for 
T 63 e and T 8 t JT systems is used to obtain analytical expressions far the first- and second- 
order JT reduction factors of T 63 (e + tz) JT systems. The effect of anisotropic corrections to 
the first-order reduction factors is also investigated. 

1. Introduction 

Many magnetic impurity ions in semiconducting crystals have orbital triplet states which 
are strongly coupled to both e- and tz-type cluster displacements. The vibronic states of 
such systems are combinations of states localised in potential energy wells which can lie 
along tetragonal, trigonal and orthorhombic axes of the crystals. It is difficult to deter- 
mine good eigenstates of these systems in general, as states associated with all three sets 
of wells must be taken into account. However, if the energy gap between the lowest 
energy set of wells and the remaining wells is sufficiently large and the mixing between 
states in different wells small, it is a good approximation to consider the lowest energy 
wells only. This is most likely to occur in strong coupling (Dunn and Bates 1987). 

In this paper, we investigate T C ~ J  (e + t2) Jahn-Teller (JT) systems which have ortho- 
rhombic wells as distinct energy minima. Most of the previous work on these systems 
was reviewed by the present authors in Bates et a1 (1987), so this will not be repeated 
here. It should, however, be noted that many approaches to T €3 (e + t2) JT systems 
consider the special case of equal coupling to the e- and t2-type phonon modes, in which 
the three different types of energy wells coexist (e.g. Chancey 1987). Consequently, the 
results obtained using these methods are fundamentally different to those obtained in 
this paper. 

The aim of this paper is to obtain analytical expressions for JT reduction factors in 
orthorhombic T 8 (e + tz) JT systems using the unitary transformation approach of 
Bates er a1 (1987) and Dunn (1988). The methods used are similar to those applied to 
T €3 e and T €3 t JT systems in the preceding paper (Bates and Dunn 1989). Expressions 
for first-order reduction factors will be obtained using states which take account of 
anisotropic effects (Dunn and Bates 1988), and the results obtained compared to those 
of previous calculations. Approximate analytical expressions for second-order reduction 
factors of spin-orbit coupling will then be derived (neglecting the anisotropic per- 
turbations). No previous calculations of these reduction factors appear to have been 
reported. 

0953-8984/89/152617 + 13 $02.50 @ 1989 IOP Publishing Ltd 2617 
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It is well known that it is necessary for either quadratic or anharmonic perturbations 
to be present for orthorhombic wells to exist (Muramatsu and Iida 1970, Bersuker and 
Polinger 1974, Bacci eta1 1975, Lister and O'Brien 1984). For the calculations presented 
in this paper, it will be assumed that the orthorhombic wells are generated by the bilinear 
form of quadratic coupling (Sakamoto 1982, Bersuker and Polinger 1983). However, it 
is a simple matter to extend the calculations to cover other perturbations. 

2. Background 

A summary of the unitary transformation method of Bates et a1 (1987), Dunn (1988) and 
Dunn and Bates (1988) was given in Bates and Dunn (1989). so only a very brief summary 
will be given here. The results apply to a TI ion in Td symmetry. 

In the unitary transformation method, a transformation Uof the form 

U = exp (i 7 a l ~ l j  (2.1 

is applied to the basic JT Hamiltonian, where the a, are free parameters covering the e- 
type phonon modes j = 8 and E and the t2-type modes j = 4, 5 and 6. The al are 
then chosen to minimise the energy of approximate eigenstates of the transformed 
Hamiltonian %. It is found that with quadratic couplings, six orthorhombic wells exist 
(labelled by k = 1 to 6) at positions -a;")h in phonon-coordinate space, where 

a j k )  = ( V,/hpC$)njk) (i = 8 ,  E ,  4 ,5 ,6 )  (2.2) 
and 
n(1) e = n(2) e = 1 L q e  

n(3) 8 = ne ( 4 )  = - 1 4 q e  

n(5) = n(6) = - 1 4 q e  

and all other nj") = 0, where 

-nhl) = n h 2 ) = ( d 3 / 2 ) q t  

n:') = n$') = ( v 3 / 4 ) q e  

n f )  =nL6) = - ( d / 4 ) 9  e 

-np)  =ni4) = ( ~ ' 3 / 2 ) q ~  

-n55) = nS6) = ( d 3 / 2 ) q t  e t ,  

with 

and VBLis the bilinear coupling constant. The positions of the wells agree with the results 
of other procedures (e.g. Bersuker and Polinger 1974). The ground states localised in 
the six wells (in the transformed picture) will be written in the form 1x6"); 0), where 
Xi") is the appropriate orbital state and the '0' indicates that there are no phonon 
excitations present in the transformed picture. In terms of statesx, y and z of an orbital 
1 = 1, it can be shown that Xf) = xy+, Xg) = xy-  , Xh3) = y z ,  , Xf) = y z  - , Xi5)  = zx, 
and Xi6) = zx- , where ab = (1 / f i )  ( a  t b). The minimum of each well is at the energy 
- EET, where 

EET = b E ~ v e  + 2ETqt (2.4) 

and E, and ET are the magnitudes of the JT energies of T 8 e and T 8 t JT systems, 
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respectively. These are defined in terms of the usual e- and t2-type coupling constants 
V ,  and VT (see Dunn and Bates 1988) by 

EE = 4K;/hCO, and E T  = ~ K + / ~ ~ C O T  (2.5) 
where 

Each ground state lies above the minimum of the well by the zero-point energy 
(hw, + $hwT). There are two orbital excited states in each well, with energies 

A, = 3 E ~ q ? :  and A2 = $(EEq)e + ETQ?:) (2.6) 
with respect to the ground states. For wells k = 1 and 2, the two excited states are 
IX;'); 0) = Ixy-;O),  IXsk); 0) = lz; O), 1Xi2); 0) = lxy+; 0) and /Xi2); 0) = Iz; O), respect- 
ively. The states for the remaining four wells follow from direct permutation of the 
symmetry labels. 

Each orbital state has a set of excited phonon states associated with it. These states 
will be written in the general form IX?; 8P~q4'5 '6~)  (i = 0 , 1  or 2), where @'indicates 
the presence of p 8-type phonon excitations, etc. These excited states have energy 
[ ( p  + q)hOE + ( r  + s + t)h+] with respect to the 'zero-phonon' states. 

The above states can be improved by the addition of a perturbation which takes 
account of anisotropy in the potential wells. The new states obtained will not be repeated 
explicitly in this paper owing to their cumbersome nature. All relevant results can be 
found in Dunn and Bates (1988). 

The states obtained so far are all applicable to the transformed Hamiltonian %. States 
applicable to the original untransformed system can be obtained by multiplying the 
transformed states by the unitary transformation appropriate to the well concerned. 
This specific form of U is called U,, where 

U k  = exp (2 Cjk)(bl - 
I 

with 
cy = - ( $ h p o , ) ' / 2 L y ; k )  

where b: and b, are the usual creation and annihilation operators for a mode symmetry 
j .  Such states will be written in the form /X,(k) ' ;  0) (= Uk IXbk); 0)). The untransformed 
states are not orthogonal to each other and do not have cubic symmetry, so are not good 
eigenstates of the system as a whole. However, cubic combinations of these states, 
constructed using projection operator techniques, can be shown to be good approxi- 
mations to the eigenstates of X (Bates et al1987). The degeneracy of the six orthorhombic 
wells is then split, to produce a lower TI triplet and upper T2 triplet, whose z-type 
components are 

where 

4Ntlet(1 + Set) = 1 and 4NLet(1 - Set) = 1 
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and Set is the oscillator overlap between, for example, lxy ; ; 0) and 1y.z ; 0). This overlap 
can be evaluated to 

S e t  = exp[ - 8 ( K E / h W E  )’ q ;  - (KT/hoT)2 9 :I* (2.9) 
The x- and y-type states of the triplets can be obtained from the z-states by cyclically 
interchanging x, y and z. The energies of the cubic Tl and T2 states were given in Bates 
et a1 (1987) and Dunn and Bates (1988) and so, as the expressions are somewhat 
complicated, they will not be repeated here. 

It will be necessary in the following calculations to determine the oscillator overlap 
between, for example, the ground states i x y i  ; 0) and Ixy L ; 0) associated with wells 1 
and 2. This overlap, which will be called Set, can be shown to take the value 

S,, = exp[ - - 2 ( ~ ~ / h c o ~ ) ~ q f ] .  (2.10) 

3. First-order reduction factors 

First-order JT reduction factors for the T, and T2 ground-state triplets have been cal- 
culated using both the simple isotropic states and the anisotropic states derived in Dunn 
and Bates (1988), using similar procedures to those used for T C3 e and T C3 t JT systems 
in the preceding paper (Bates and Dunn 1989). 

Using the simple isotropic states, the reduction factors between the T1 states are 
calculated to be 

~ ; i  (TI) = 2N+1et ( 3 ~ e t  + s e t )  

KYl(T2) = 2N+Iet(l + 3Set) (3.1) 
K!:(E) = N&ct( l  + 4S,, + 3Set) 

where the labels ‘11’ indicate that the reduction factors are between the T1 states. These 
formula are identical to those obtained by Bersuker and Polinger (1974). (Note that the 
S and used by Bersuker and Polinger have values that are half those used here.) For 
the T, triplet, the reduction factors are 

G: (T 1 )  = 2G2,t P e t  - S e t  1 
KZ;(T,) = - ( 3 4  
K;;(E) = N+Zet(l - 4S,, + 3Se,). 

Bersuker and Polinger (1974) state that the reduction factors between the T2 states are 
the same as those between the Ti  states, which cannot be the case. Reduction factors 
can also be calculated between the T1 and T2 states. The two sets of states belong to 
different effective 1 = 1 manifolds, so operators must be chosen which reflect this. 
However, it can be shown that 1, (of 1 = 1) can be used as a suitable T1 operator and 
TxL = (V‘3/4)(lxlY + l j l y )  as a suitable T, operator if it is assumed that the states all 
belong to the same 1 = 1 manifold. E, = &[31; - 1(1+ l ) ]  can similarly be used as a 
suitable E-operator. However, it is incorrect to use E ,  = ( f i / 2 ) ( l :  - l ; ) .  The appro- 
priate operator for E, is 

- (i/V%) (1;’’ Ti:) + 1:;) Ti:) - 21i1) T ( 2 ) )  XY 

(constructed using the tables of Koster et a1 (1963) for example), where 1;’) operates on 
T1 states and Ti:) on T2 states, etc. It must be remembered that the reduction factors 
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have arbitrary signs, dependent upon the phase definitions of the TI and T2 states. One 
consistent choice gives 

K%(Tl) = 2NTletNT2et(-Set + $et) 

K%('r2) = 2NTletNT2et(1 - Set> 

~1 (E) = 3 ~ T l e t ~ n e t  (1 - S e t  1. 
(3.3) 

If the anisotropic states of Dunn and Bates (1988) are used, the nine reduction factors 
are calculated to be 

where 

P = 1 - 21qt + 3 q e q t ( K  + 2M) 

Q = 1 + $ I q t  + 3 q e q t ( K  + 2M) 

R = 1 + 2Jqe - $ I q t  - 3 q e q t ( K  - 2M) 

with 

(3.4) 

(3.5) 

Here NTlet and J C ~ ~ ~ ~  are the normalisation factors for the anisotropic T1 and T2 states 
(Dunn and Bates 1988). 

The values of the reduction factors in the very-strong-coupling limit are identical 
to those of Lister and O'Brien (1984), except for the KTi(E) reduction factor, 
which has a value twice that given in Lister and O'Brien (1984). To investigate 
the behaviour of the reduction factors for weaker couplings, the above formula for 
the reduction factors have been plotted as a function of the parameter q = E,/E,. 
This parameter is introduced to fix the relative strengths of the e- and t2-type 
couplings and so ensure that the orthorhombic wells remain minima throughout 
the range of the plot. 

In figure 1, the reduction factors for the T ,  states have been plotted as functions 
of KT/fiw, where wE = wT = w. The lower set of curves have q = 1.2 (which is 
equivalent to fixing KE = k 0.632 KT). For such values of KE and KT, the orthorhombic 
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Figure 1. Variation of the first-order reduction factors Kfl(E),  K;i(T,) and Kti(T,) as a 
function of K,/hw, where wE = wT = o. The lower set of curves are for q = 1.2 and the 
upper set for q = 0.8. The broken curves are the results of the calculations without 
anisotropy and the full curves with anisotropy. For the lower set of curves, those marked 
with a circle have FBL = 0.065 and those marked with a triangle have FBL = 0.105. For the 
upper set, those marked with a circle have FBL = 0.035 and those marked with a triangle 
have F,, = 0.075. 

wells will only be energy minima if (Bates et a1 1987) 

(in the absence of other quadratic couplings). Graphs have been plotted for F B L  = 
0.065 and 0.105. The upper set of curves have v = 0.8. This is equivalent to fixing 
K ,  = k0.516 KT. For orthorhombic energy minima, 

Graphs have been plotted for F B L  = 0.035 and 0.075. It should be noted that the 
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bilinear coupling constant V,, must always be positive to ensure orthorhombic energy 
minima (in the absence of other quadratic couplings). 

Figure 1 shows that the anisotropic corrections to the reduction factors for the TI  
states are small for all coupling strengths. The corrections to the T2 states can become 
very large at weak values of coupling because Set + 1, and so NTZet+ CC in this limit. 
Also, the limit of K;i(E) as K ,  and K,-O is path-dependent. Problems can be 
expected to arise with the T2 states in weak coupling as the separation from the T, 
ground state becomes large. 

The three reduction factors for the T, states are related by the condition 

K?:(E) + $[K%(T,) - K?i(Ti)] = 1 - 3fi;(Ti) (3.8) 

fli(T1) = 3NLetse t~ t ( - i l+  4qeK) (3.9) 

where fii(Tl) = 0 if the anisotropic corrections are neglected and 

when anisotropy is included. This relation was derived originally by Leung and Kleiner 
(1974) from the normalisation condition for a T1 vibronic state. The equivalent result 
for a T2 state is 

(3.10) K%(E) + $[K%(Ti) - K'%(T,)] = 1 + 3f%(T2) 
where E2(T2) = 0 without anisotropy and 

E ( T 2 )  = 3sV^LetSet~t(+I+ 4qeK) (3.11) 

with the anisotropic corrections. The reduction factors between the TI and T2 states 
are constrained by the orthogonality of T, and T, states, such that 

(3.12) K ? i W  + i[K%(T,) - K%(T2)1 = 3f%(Ti2) 
where also fi$(TI2) = 0 without anisotropy and 

fli(T12) = 3Jf~let"'~etSet q t (+I> (3.13) 

when anisotropy is included. 
The values of the three functions fli(T,), fi@2:(T2) and Ai(T12) are all small, as 

predicted by Leung and Kleiner (1974). However, Leung and Kleiner predict that 
fi:(T,) should be positive, whereas the expression (3.9) can be either positive or 
negative. 

4. Second-order reduction factors 

Second-order reduction factors for spin-orbit coupling can be calculated in a manner 
analogous to that detailed in § 3.2 of the preceding paper for T C3 e and T C3 t JT 
systems. It is first necessary to obtain a set of phonon excited states which can be used 
as a basis for second-order perturbation theory. The isotropic cubic combinations of 
states (2.8) will be used for the zero-phonon states. However, the simple states with 
phonon excitations localised in the six orthorhombic wells will be used as excited states 
owing to the difficulties in obtaining a full set of cubic states. Although the states are 
not mutually orthogonal, and so only form an approximate basis set, the assumption 
is reasonable for a first approximation. The combinations of 6 and E phonons appearing 
in the true cubic combinations will be used (Dunn 1988) to minimise the overlaps 
between the excited states. Hence the states used are 

I x Y ; ;  I Y Z : ;  e : ~ g ~ 5 ~ 6 ~ )  i z X , ;  e;E;4r5s66') (4.1) 
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(summed over all n = p + q + r + s + t S l ) ,  where IO!) = (b&.)P10) etc., with 

blZ =be’ 

bkZ = b,f 

bix = -(1/2)b$ + ( f l / 2 ) b k  

b& = - ( f l / 2 ) b , +  - (1/2)b: 

b& = - (1/2)bi - (V”3/2)bQ 

b& = ( f l / 2 ) b i  - (1/2)b,t 
( 4 4  

(note that 0: # ( - ( l /2)6 + ( d \ / 3 / 2 ) ~ ) ~ ,  etc.). The excited states will be assumed to 
be of energy 

E,, = ( p  + q)hco, + ( r  + s + t )hw,  (4.3) 
relative to the ground state. Hence for the T1 states IT,xet), (T,yet) and jT,zet), the 
set of excited states used consists of the three states (T2xet), lT9et) and /T2zet) and 
the set of states (4.1) summed over all n # 0. The three T, states are formed into the 
projection operator Po and all excited states with n excitations into the projection 
operator P,f. In a similar manner, the set of states Po applicable to the T2 triplet 
consists of the states 1T2xet), ITget) and (T2zet) and P, consists of lT,xet), /T,yet) and 
/T,zet) and the set (4.1). 

The second-order reduction factors can then be calculated using the perturbation 
x 

v = - 2 ( I  . s )~ / i  ( I  S)P,/Eri (4.4) 
n = l  

This requires evaluating matrix elements between wells 1 and k ,  such as 

(Xf”; 011. SIXhk)’; 8{~$4‘5’6‘) 

= (x#)/l?’ s / x ~ k ’ ) ( o / u :  Uk/O$&?4’5’6‘). (4.5) 
The oscillator matrix element can be evaluated using the identities of Dunn (1988), 
with the result that 

(OluT Uk/8$&?4‘5’6‘) 

= S’ ( D  t” ) f  ( D  ) 4 ( D  p) ‘ ( D  5“”)’ ( D  &k” ) [/( p ! q ! Y !s !t! ) 1 * (4.6) 
where 

~ j k 0  = C(k) - c(C 
! ! 

and S’ is the oscillator overlap between lX(;j) and 1x6~’) (i.e. S’ = Set or set). The 
matrix elements must then be summed over all y1 f 0. To simplify the algebra, it is 
useful to define the functions 

C(i) = - - (Z!p iZKT\,‘ hco, 

where i, j ,  k and 1 are integers. The matrix elements (4.5) can then be written in terms 
of these three functions by substituting the correct values for the DfkO. For example, 
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(zx!+;OIl.Slyz'+; 8 $ ~ q 4 ~ 6 ~ )  = ~ i S , , ( - l ) ' B B ( q , r , s ) 6 ~ p S ~ , ( S , + S ,  - S , )  

where do, is the Kronecker delta function (with one index = 0). 
It is also necessary to evaluate the matrix elements 

(X t " ;  011. S l X f ) I ;  8{~$4'5'6') 

and 

(xp I ;  011 - ~1x6~) I ;  8 ; ~ ; 4 ~ 5 ~ 6 ~ ) .  

These calculations are more complicated than those above owing to the nature of 
multiple x- and y-type 8 and E phonon excitations. For example, the vibronic com- 
ponent of the x-type matrix element is 

(0 1 U: U k  I 8: E$ 4 5 ' 6') = S ( D  ik')) ( D  y') ) ' ( D  bk')) ( p ! q ! ) lI2 Fp4 /( r !s ! t ! ) (4.9) 

where 

2 p f 4  

p 4 ( - 1 ) P + ' 4 - " ( ~ ) a + c l - P ( D k k O ) P + 4 - a - P ( D ~ k ' ) ) a + P  

a ! ( p  - a) !P ! (q  - P)! Fp4 = 2 I: 
a=O p=o 

These matrix elements can be written in terms of the functions A(i,  j ,  k ,  l ) ,  B( i ,  j ,  k )  
and C(i) ,  where the parameters i, j ,  k and 1 are functions of the summation indices. 

Combinations of the above matrix elements must now be taken to form the matrix 
elements 

(Ti  zet 1 I . S IXf) ; 8$ €4 4'5' 6') 

etc. These are then formed into the appropriate expressions to evaluate (4.4). This 
involves taking a sum over all p ,  q ,  r ,  s and t (excluding p = q = r = s = t = 0). 
Fortunately, when the indices are summed, the matrix elements involving x- and y -  
combinations of 8 and E can be greatly simplified. For example, the product 

P 4  

2 2 ( f i ) " + q - p  [ ( p  + q - a - P)!(a + P )  ! ]  1'2A ( ( p  + q - a - B) ,  ( a  + P ) ,  r ,  s) 
a=O p = o  

which frequently appears in the calculations, simplifies to 
P 4  

2 3q-pA(p ,  q ,  r ,  s ) ( p ! q ! ) " * .  
a=o p = o  

The resulting sums can be further simplified by noting that 

Finally, use is made of the identity 

(4.10) 

(4.11) 

(4.12) 

to reduce sums over multiple indices to sums in either one or two indices. It is found 
that the calculation results in the five independent sums fit#, where 

fl = 5'Zt[G(3X, 2Y) + H T ( 2 Y ) ]  

fit = S3i7,(4Y) 
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and 

(4.13) 

and where 

x= (KE/hwE)* and Y = (KT/~coT)~ .  

The sums fi'-fi' will be called the second-order reduction factors. It should be noted 
that G(x,  y )  can only be reduced to a sum over one index in the special case wE = wT. 

There is a further term that contributes to the reduction factors in this system. This 
term, which we call get, arises due to the coupling between the cubic T, and T, ground 
states. This has been evaluated to 

get = L * / A  where L = 2NTl,tNnet(Set --Set) (4.14) 

and A is the inversion splitting between TI and T2 ( A  = (ETZet - ETiet)  for the TI state 
and (ETiet - ETZet) for the T2 state). It should be noted that the limit of get when A -+ 0 
is well defined owing to the behaviour of L as A + 0. 

The second-order factors fiwN&,&' - hwN$efit and huget have been plotted in 
figure 2 for q = 0.8 and 1.2 and with wE = wT = LC) and neglecting V,,- in A .  The figure 
shows that the second-order reduction factors are all significantly smaller than the 
first-order reduction factors over the full range of coupling strengths investigated. This 
is in contrast to the T (8 t JT system, in which the second-order reduction factors can 
dominate (Bates and Dunn 1989). 

The effect of spin-orbit coupling to second order can be described by the effective 
Hamiltonian (in I = 1) 

(4.15) xso = xeg;, + xg 
where 

2:;) = yA1.S 

2:;) = A2[b(l * S)' + c(E0Ei + EEE:) 

+ d(L,,S,, + L,,S,, + L,,S,) + el(l+ l)S(S+ l)] (4.16) 

(with E ,  = - (V"3/2)(12 - I ; ) ) ,  where E; = E, with I replaced by S, etc., L,, = l,lz 
+ I$, and where y is the first-order reduction factor KTi(T,). The second-order 
coefficients in (4.16) can be calculated in terms of f?'-f;' and get by comparing the 
matrix elements of Yeso with those of the perturbation (4.4). It is then found that for 
the TI triplet, 

b = 2N2Tlet(f7' - 4f;f - 2fB - f ; ' )  + get 
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Figure 2. Variation of the factors hoN&,,f;' to hwN:,,,fS' (labelled 1 to 5) and hoget as 
a function of K,/hw, where wE = w, = 0. The lower set of curves have 7 = 1.2 and the 
upper set 11 = 0.8 

= ZN: 3 Tlet(f?' - 2fF + 4f;' - f ? )  - *get (4.17) 

d = - 2N+1,,frt 
e = 4c + d. 

Alternatively, it is possible to put d = 0 and redefine y ,  b ,  c and e (as for T @ t JT 
systems in Bates and Dunn (1989)) so that y contains both first- and second-order 
contributions. It is then found that 

y K:\ (TI) - 2N$l,fit 

b = -2N&,, (fit + 4fl+ 2fe,' +A') +get 
(4.18) 

C = $N:1,t(5fit - 2 E  + 4flt -A') - *get 

e = Bc - 2N&,fit .  
The effective Hamiltonian (4.16) can also be used to describe spin-orbit coupling 

in the T2 ground states. it is found that the same reduction factors apply, either with 
y = K;;(T,) and 

a = O  
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b = 2NLet(-fy - 2fif +Et) -get 

e = I c - d  

or with y = KZ:(T,) - 2Nhetf;' and 

b =2Nhet(flt-2fe4f+Et)-get 

(4.19) 

(4.20) 

e = 4c - 2NLe, f;t 

In all cases, the term in e is included to ensure that the trace of Xso is zero. 
As there are four parameters in the effective Hamiltonian (4.16) and six reduction 

factors, it is not possible to determine independently values for the reduction factors 
from experimental results without further information, such as uniaxial stress data. 

It can be difficult to distinguish a T @ (e + t2) JT system from a T C3 e or a T C3 t JT 
system purely from the form of the effective Hamiltonian. For example, our cal- 
culations for T @ (e + t2) JT systems show that fit is the largest of the six second-order 
reduction factors (figure 2) so that the second-order part of Xso is dominated by the 
'c' term (E,ES, + E,ES,). This can make the system appear very similar to a T C3 e JT 
system, in which the 'c' term can also dominate (Bates and Dunn 1989). However, 
for a given coupling strength, A' is much smaller than the second-order T 63 e reduction 
factors E and E ,  allowing a possible distinction between the two systems to be made. 

5. Conclusions 

As in the case of T C3 t JT systems described in the previous paper, the transformation 
method of Bates et a1 (1987) has been successfully applied to T C3 (e + t2) JT systems 
for the calculation of analytical expressions for both first- and second-order JT reduction 
factors. This would appear to be the first time that second-order reduction factors 
have been calculated for this system by any method. The first-order reduction factors 
have also been calculated incorporating so-called anisotropic corrections to the effec- 
tive oscillator frequencies, again for the first time to our knowledge. Our first-order 
reduction factor results cannot be compared with the numerical results of Boldyrev et 
a1 (1981) and Sakamoto (1982) because such calculations relate to systems in which 
wells of all three symmetries coexist. 

There are further improvements which can be made in the calculations of the 
second-order reduction factors. In particular, we are currently in the process of 
constructing a full set of cubic excited states for use in the calculations. Anisotropic 
and bilinear corrections are likely to be small compared to the above modifications. 

It is important to apply the above theory to real T @ (e + t2) JT systems. Unfor- 
tunately, there are very few systems known which are of this type. One system that 
has been identified as T C3 (e + t 2 )  is GaAs : Cr3+ (Krebs and Stauss 1977) and our 
analysis of the original electron paramagnetic resonance and other experiments using 
the above theory will be reported separately (Parker et a1 1989). Very recently, 
Sahraoui-Tahar et a1 (1989) and Butler et a1 (1989) have shown that the ground states 
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of Ni2+ ions in both GaAs and GaP may also undergo orthorhombic JT distortions. 
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